Improved Gabion Design for River Bank Protection and Flood Control in Nepal

Suresh Laudari Ph D Scholar, Ehime University Kochi University/ Geo-Technical Engineering Lab

2023.12.22 Kathmandu, Nepal

Outline of Presentation

- 1. Introduction
 - -Study area site situation
 - Problems to address

2. Planning, Design and Construction Practices in Nepal and Japan

- 3. Gabion Design & Construction Methodology
 - Site Geo-technical Situation
 - Need of Japanese Methods
 - Improved gabion design concept for Nepal
- 4. Result and Discussion

Study Area Site Situation

- Paluntar, Gorkha, Nepal, Small Khar Khola river, Total 965 people, Total 215 HHs affected, agricultural lands, two bridges and roads.
- Few civil structures and embankments.
- The flow over topped bank and flooded. infrastructures and Agri Land. Rain fall is 2,000 mm in the year of 2022.

「HFL 3m for 100 years, HFL 2m for 30 years for iver width 18m.

Problem to address

- The present problems in gabion of Nepal is less durable, damages fast and unstable. Few standard design and construction practices.
- No geotextile use, no foundation provided, only 100 cm height gabions, vertical type and lower slope type.
- The Khar Khola River is with few river embankments and heavy bank erosion and overflow.

Gabion Design & Construction Practices

Nepal

Gabion in Lohhore Khola, Dailekh by Public

Gabion in Chunkhu, Solu by local Gov

Sainamaina, Rupendehi by DWRI

Typical Gabion design using in Japan

Gabion in Okudakhawa Kochi Japan

Planning Design and Construction Practices of gabion in Japan & Nepal

Parameters	Japan	Nepal
Design and	Stringent standard Planning and	Local practices
Planning	Design procedures	dominant design
Consideration of	Hydrological, seismic,	Only Hydrological
design parameters	environmental & geo-technical	Parameters
	Parameter.	
Geo-tech	Detailed geo-tech & topo survey	General topo survey
Topographic	and right of way for channel.	considered.
survey & RoW.		
Construction	Rigorous construction process	Follow the local
process	supervision of experts.	practices
Materials use	High quality of construction	Locally available
	materials; wire thickness, zinc	materials, low quality
	coating, use of similar stone,	of wire used 2.33-
	geo-textile. Thickness- 2.64-	3.66mm, stone sizes
	16.00mm, H- 30 cm, 50cm,	varies, No geo-textile.
	100cm, Machine made.	H- 100 cm usual.
Life span	Durable up to 40-50 years	Durable up to 10 years
Cost of	Higher initial cost but overall life	Lower cost.
construction	span cost is low.	
Maintenance plan	Clear maintenance plan	No plan

Gabion constructed Minaminotanigawa, Kochi, Japan

Unit: mm

Gabion constructed at Sasaha Khola, Dhading, Nepal

Nepal prioritize cost-effectiveness and local materials, Japan emphasizes long-term resilience and stringent engineering standards.

Gabion Design & Construction Methodology

Site Geotechnical Condition

- Sample collected from site, sieve analysis.
- The top soil 9.4% of the fine particle, middle and bottom layer about 1% of fine particle.
- As per grain size, foundation soil is with about 80% gravel.

Portable Dynamic Cone Penetration (PDCP) Test

- Assess soil density, loadbearing capacity and shear strength
- Unit in Number of blow Nd
- Nd values 10cm erection of each.

PDCP Test in field

PDCP Equipment

Site Geotechnical Condition

- PDCP test in the site.
- On the top layer (1.2m) the Nd< 10, hence softer soil.
- Depth below the middle layer (1.20m) Nd > 20 for both locations.
 Hence harder soil in middle and bottom layer.

No treatment need for foundation soil

Improved Gabion Design Concept

Why Japanese Methods

- Long term resilient and stringent design and standard construction practices.
- Follow the Gabion Technical standard accredited by Government of JAPAN, JIS.
- Consider Seismic, Geo-technical, Environmental and Hydrological situation of the site.
- Good quality of construction materials.
- Long life span because of stability.
- Proper maintenance plan.
- Higher Initial cost but overall payback cost is low.

Improved Gabion Design Concept

Construction Process

Result and discussion

Adaptation of Japanese gabion practices in improved design

Rigorous Engineering standard:

- Detailed topo survey
- Soil Geo-technical Analysis
- Hydrological Analysis
- Series of discussion for finalization of design to adopt at local level.
- Follow available Engineering standard of Nepal

Construction Materials:

- Wire mesh quality- available wire mesh in Nepal Market, 3.66mm thickness.
- Stone sizes- $\emptyset = 20-25$ cm stone, more uniform, available in local area.

Construction Process:

- Regular supervision by engineers
- Proper sizing and Placement
- Partial use of Machine for construction
- Follow the construction and safety guideline

Maintenance Plan

Comparison between two types

Parameters	Japanese Type	Mix Type
Planning and Design	New Standard Plan and Design	New Standard Plan and design
Construction Materials	Most of locally available Materials expect wire mesh. Partial machine for construction.	Locally available Materials. Partial Use of machine for construction.
Parameter of construction	Height, 50cm and front lap is 25cm.	Height, 100cm and front lap ,50cm.
Use of Geo-textile	Uses Geo-textile	Uses Geo-textile.
Easiness	Need training for construction	No training needed
Stability	More stable than Mix type	Less stable than Japanese type
Cost of Construction	Costlier than mix type	Less costly then Japanese Type
Maintenance Plan	Clear Maintenance plan	Maintenance plan by community

Stability analysis gabion Revetment

Field Level

- Monitoring of Horizontal and Vertical Deformation
- Regular Flow measurement

Laboratory Experiment

- Consideration of Back Water Effect and Front Water Effect on gabions, with geo-textile and without geotextile gabion, lunching apron without lunching apron and vertical and slope type gabions.

- Nepali style; Japane
- se style and Mix style.

Stability Analysis

small deformation 3cm mix type 37.5 meter section.

Schematic diagram of gabion based retaining wall deformation

Horizontal deformation of gabion wall

Stability analysis gabion Revetment

Field Level

- Monitoring of Horizontal and Vertical Deformation
- Regular Flow measurement

Laboratory Experiment

- Consideration of Back Water Effect and Front Water Effect on gabions.

- Nepali style; Japanese style and Mix style.

Stability Analysis

small deformation 3cm mix type 37.5 meter section.

Schematic diagram of gabion based retaining wall deformation

Horizontal deformation of gabion wall

Conclusion

- Overall, gabion technology is a cost effective and environmentally friendly solution for flood control and erosion control and widely used in many parts of Nepal and other developing countries.
- The improved gabion technology seen to be the most effective, economic, durable and adaptable for Nepal and similar context.

The further study will analyze the best possible gabion design, construction methodological options suitable for Nepal and similar context.

Thank you for the attention

Questions

